Introduction
 
Matters and Properties of Matters
 
Atomic Structure with Examples
 
Periodic Table
 
The Mole Concept with Examples
 
Gases with Examples
 
Chemical Reactions with Examples
 
Nuclear Chemistry (Radioactivity)
 
Solutions
 
Acids and Bases
 
Thermochemistry
 
Rates of Reactions (Chemical Kinetics)
 
Chemical Equilibrium
 
Chemical Bonds
 
Exams and Problem Solutions
 
--Matters and Properties of Matters Exams and Problem Solutions
 
--Atomic Structure Exams and Problem Solutions
 
--Periodic Table Exams and Problem Solutions
 
--The Mole Concept Exams and Problem Solutions
 
--Gases Exams and Problem Solutions
 
--Chemical Reactions Exams and Problem Solutions
 
--Nuclear Chemistry (Radioactivity) Exams and Problem Solutions
 
--Solutions Exams and Problem Solutions
 
--Acids and Bases Exams and Problem Solutions
 
--Thermochemistry Exams and Problem Solutions
 
--Thermochemistry Exam1 and Problem Solutions
 
--Thermochemistry Exam2 and Problem Solutions
 
--Rates of Reaction Exams and Problem Solutions
 
--Chemical Equilibrium Exams and Problem Solutions
 
--Chemical Bonds Exams and Problem Solutions
 
Old Version
 


Menu

Thermochemistry Exam1 and Problem Solutions


Thermochemistry Exam1 and  Problem Solutions

1. Which ones of the following reactions are endothermic in other words ∆H is positive?

I. H2O(l) + 10,5kcal → H2O(g)     ∆H1

II. 2NH3 +22kcal →N2 + 3H2 ∆H2

III. Na + Energy → Na+1 + e-     ∆H3

Solution:

When matters change state from liquid to gas, they absorb energy. I is endothermic reaction. ∆H1 is positive.

In decomposition reactions energy (heat) is absorbed. III is endothermic reaction. ∆H2 is positive.

To remove one electron from atom we should give energy, so III is endothermic reaction and  ∆H3 is positive.


2. Given table shows  standard molar enthalpy of formation of some matters.

Find enthalpy of C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(l) using data given in the table below.

Solution:

C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(l)

∆H=[3∆HCO2 + 4∆HH2O] - [1∆HC3H8 + 5∆HO2]

Since O2 is element, molar formation enthalpy of it is zero.

∆H=[3.(-94) + 4.(-60)] - [1.(-25) + 5.0]

∆H=-522 + 25

∆H=-497 kcal/mol (it is negative, in other words reaction is exothermic)


3. To calculate enthalpy of ; CO2(g) + H2(g) → CO(g) + H2O(g) which ones of the following must be known?

I. Molar formation enthalpy of H2O(g)

II. Molar formation enthalpies of CO(g) and CO2(g)

III. Enthalpy of reaction; H2(g) + 1/2O2(g) → H2O(g)

Solution:

We find enthalpy of CO2(g) + H2(g) → CO(g) + H2O(g);

∆H=Σa∆H(F.(Products) - Σb∆H(F.(Reactants)

∆H=[∆HCO + ∆HH2O] - [∆HCO2 + ∆HH2]

Since H2 is element, molar formation enthalpy of it zero.

So, we must know I and II to find enthalpy of given reaction.


4. Find molar combustion enthalpy of C2H5OH using following molar enthalpies of matters;

∆H C2H5OH(l)= -67 kcal/mol

∆H CO2(g)= -94 kcal/mol

∆H H2O(l)= -68 kcal/mol

Solution:

We should first write combustion reaction of C2H5OH;

C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(s)

We use following formula to find unknown enthalpy;

∆HReaction=Σa∆H(Products) - Σb∆H(Reactants)

∆HCombustion=(2∆HCO2(g) + 3 ∆HH2O(l) ) - (∆HC2H5OH(l) + 3∆HO2)

∆HCombustion=[2.(-94) + 3.(-68)] - [-67]

∆HCombustion= -325 kcal/mol


5. There are 32 g S in 1000 g vitreous calorimeter having 1000 g water in it. If 32 g S is burned up in calorimeter, temperature rises from 20 0C to 90 0C. Find molar combustion enthalpy of S.

Solution:

We find heat gained by glass and water during combustion by formula;

Q=m.c.∆T

Qglass=1000.0,2.(90-20)=14000 cal

Qwater=1000.1.(90-20)=70000 cal

Qcalorimeter=70000 + 14000= 84000 cal

1 mol S is 32 g.

Molar combustion enthalpy of S is 84000 cal or 84 kcal.

Since it is combustion enthalpy;

∆HCombustionS= -84 kcal/mol


Author:




Tags: Enthalpy and Thermochemical Reactions Bond Energies and Enthalpy Measuring Enthalpy and Calorimeter Thermochemistry Cheat Sheet Thermochemistry Exams and Problem Solutions Thermochemistry Exam2 and Problem Solutions


© Copyright www.ChemistryTutorials.org, Reproduction in electronic and written form is expressly forbidden without written permission of www.ChemistryTutorials.org. Privacy Policy